Dissecting the behavior and function of MBD3 in DNA methylation homeostasis by single-molecule spectroscopy and microscopy
نویسندگان
چکیده
The detailed mechanism for DNA methylation homeostasis relies on an intricate regulatory network with a possible contribution from methyl-CpG-binding domain protein 3 (MBD3). In this study we examine the single-molecule behavior of MBD3 and its functional implication in balancing the activity of DNA methyltransferases (DNMTs). Besides a localization tendency to DNA demethylating sites, MBD3 experiences a concurrent transcription with DNMTs in cell cycle. Fluorescence lifetime correlation spectroscopy (FLCS) and photon counting histogram (PCH) were applied to characterize the chromatin binding kinetics and stoichiometry of MBD3 in different cell phases. In the G1-phase, MBD3, in the context of the Mi-2/NuRD (nucleosome remodeling deacetylase) complex, could adopt a salt-dependent homodimeric association with its target epigenomic loci. Along with cell cycle progression, utilizing fluorescence lifetime imaging microscopy-based Förster resonance energy transfer (FLIM-FRET) we revealed that a proportion of MBD3 and MBD2 would co-localize with DNMT1 during DNA maintenance methylation, providing a proofreading and protective mechanism against a possible excessive methylation by DNMT1. In accordance with our hypothesis, insufficient MBD3 induced by small interfering RNA (siRNA) was found to result in a global DNA hypermethylation as well as increased methylation in the promoter CpG islands (CGIs) of a number of cell cycle related genes.
منابع مشابه
جداسازی پروتئین LMG از بافت کبد موش و میانکنش آن با
ABSTRACT In eukaryote cells, DNA is complexed with a series of basic proteins making units of chromatin structure named nucleosomes. In addition, nonhistone proteins with different function are the components of chromatin. Among these proteins, a group with a low mobility on gel electrophoresis have been identified and named LMG. In this study a LMG protein with a molecular weigh of 160 ...
متن کاملDNA Methylation and Its Role in the Development of Leukemia
Epigenetic changes play an essential role in cancer pathogenesis. It has been established by next-generation sequencing that more than 50% of the human cancers carry mutations in mechanisms involved in the organization of the chromatin and epigenetic regulations. DNA methylation is among the most common epigenetic changes in leukemia. In contrast to DNA mutations which are passively inherited f...
متن کاملO-11: N-a-acetyltransferase 10 Protein Regulates DNA Methylation and Embryonic Development
Background Genomic imprinting is a heritable and developmentally essential phenomenon by which gene expression occurs in an allele-specific manner1. While the imprinted alleles are primarily silenced by DNA methylation, it remains largely unknown how methylation is targeted to imprinting control region (ICR), also called differentially methylated region (DMR), and maintained. Here we show that ...
متن کاملDNA methylation directs genomic localization of Mbd2 and Mbd3 in embryonic stem cells
Cytosine methylation is an epigenetic and regulatory mark that functions in part through recruitment of chromatin remodeling complexes containing methyl-CpG binding domain (MBD) proteins. Two MBD proteins, Mbd2 and Mbd3, were previously shown to bind methylated or hydroxymethylated DNA, respectively; however, both of these findings have been disputed. Here, we investigated this controversy usin...
متن کاملAssociation study between DNA methylation and genetic variation of APOE gene with the risk of coronary artery disease
Coronary artery disease (CAD) is a common health problem with a high rate of disability and death. Dyslipidemia and altered metabolism of Apo-lipoproteins are involved in the CAD pathogenesis. The current study investigated two common polymorphisms (rs429358 and rs7412) and promoter DNA methylation status of APOE in the Iranian CAD patients and control subjects. Two hundred angiographi...
متن کامل